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Hardening non-linear behaviour in 
longitudinal tension of unidirectional 
carbon composites 
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Uniaxial tensile tests of unidirectional carbon-epoxy coupons are conducted in the 
longitudinal direction. It is observed that the longitudinal modulus increases with 
axial stress or strain up to the intermediate level of tension. A fractional constitutive 
relation with a quadratic denominator is derived by the method of the theory of 
non-linear elasticity. This equation adopting the estimated higher-order compliance 
coefficients exhibits an excellent agreement with the experimental results. An 
empirical strain-based equation is also proposed as a simpler alternative. Averaging 
formulae for both types of relation are provided for a practical application. The 
present phenomenon includes the behaviour in a low-stress region discovered by 
some early work. The consideration of the present non-linear behaviour improves 
the correlation between theory and experiments in stress-strain relationships of 
fabric composites with carbon fibres. 

1. In t roduct ion 
Plastics reinforced by carbon fibres like 
carbon-epoxy or carbon-PEEK are showing 
real promise for super-lightweight aerospace 
structures. Recent advances in the strengthening 
of polyacrylonitrile (PAN) fibres may accelerate 
the development of such structures. Further- 
more, engineers in the aircraft industry recog- 
nize that the strong anisotropy of these 
composites contributes to a realistic aeroelastic 
tailoring technique [1] in wing design. A stringent 
correlation between theory and experiments is 
especially required for this new area of 
technology. 

Carbon composites, however, sometimes 
annoy designers and researchers by the lack of a 
precise agreement of theory with practice. One 
of the authors experienced [2] that the predicted 
longitudinal modulus by the Rule of Mixtures 
and the corresponding fibre modulus reported 
by the manufacturer [3] are much higher than 
measured values at the low strain level 

( = 500 X 10 - 6 )  in the basic part of the aeroelas- 
tic tailoring research programme conducted at 
the National Aerospace Laboratory. This experi- 
ence provided a motivation for the present 
paper. The other background is the analysis of 
the non-linear behaviour of fabric composites 
conducted serially by the authors. A comparison 
of theory and experiments [4] suggests to us that 
unidirectinal (UD) carbon composites must 
exhibit a non-linear stress-strain behaviour of a 
hardening type in longitudinal tension. An 
extensive literature survey also indicates that 
this suggestion should be true. Curtis et al. [5] 
reported first a dependency of longitudinal 
modulus of a single carbon fibre on stress, but 
no quantitative explanation was given there. An 
empirical formula relating stress and longitudi- 
nal modulus of UD carbon composites was 
proposed by van Dreumel et al. [6]. This linear 
equation, however, has no rational background. 
Besides both papers confined themselves to the 
behaviour at lower stress levels. Some other 
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Figure 1 Experimental apparatus. 

literature (e.g. [7, 8]) shows hardening non- 
linear material behaviour of carbon composites 
unintentionally. 

The present paper states first the experimental 
results of  longitudinal tensile tests of  carbon-  
epoxy UD composites where a sophisticated 
strain-measurement system is utilized. It is con- 
firmed that the stress-strain curves are convex 
downwards at lower stress levels. A rational 
constitutive equation is derived next from the 
theory of  non-linear elasticity as a convenient 
tool for the description of such behaviour. 
Higher-order elastic compliances are estimated 
based on the experimental results. An empirical 
formula relating the longitudinal modulus and 
strain is also given as an alternative tool for the 
description. 

2. Experimental procedure 
Straight coupon-type specimens are cut out of a 
plate cured with 4-ply UD prepreg tapes of  
P-3060 (Toray Co.) which consists of  T-300 
fibres and No. 3601 epoxy resin. The specimen 
sizes are 350 mm in length, 12.5 mm in width and 
approximately 0.5ram in thickness, and the 
quantity is five. A coincidence of  the fibre and 
coupon directions is fully achieved by a cautious 
cutting procedure. There should be no fibre 
waviness and no thermal warping in the speci- 
mens. The reason why the warping is undesira- 
ble is that the present strain measurement system 
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is highly sensitive to a coupling strain induced by 
warping. 

An Instron model 1125 testing machine is 
employed here. A pair of  electro-optical dis- 
placement indicators (Zimmer 100B) are 
adopted as an extensometer instead of  common 
strain gauges, because strain gauges may stiffen 
thin coupons and the linearity of  the entire cir- 
cuit can be regarded as insufficient for the 
present purpose. These electro-optical machines 
are very accurate, and skills in target-making 
contribute to an improvement of the accuracy. 
The gauge length between targets is precisely 
100mm and the grip length 50mm, so there is 
plenty of margin from a grip to a target. A 
quasi-static strain rate of  6.7 x 10 -5 is selected. 
Volume fractions of fibre for the coupons are 
measured by a burn-out method equivalent to 
ASTM D2584, and the averaged results of V r is 
69%. Fig. 1 depicts the experimental apparatus. 

An example of  a direct output of  load against 
strain curves for Specimen No. 3 is shown in Fig. 
2, and the scale of stress is also given there. We 
can see that the curve is convex downwards, 
particularly up to 60 or 70% of the failure strain. 
Kamimura et al. [8] report similar stress-strain 
relations even for 0/90 cross-ply laminates where 
some knee effects are expected. Fukunaga [7] 
shows more seriously non-linear stress-strain 
curves. From here on, we define the variable 
longitudinal elastic modulus EL(O'I, el) as a 
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EL(O- I ,  ,sl) = d O " l / d e  ' ( 1 )  

where subscript 1 denotes the longitudinal axis. 
In practice, a finite load increment 
AP = 1.57kN is chosen as a compromise 
between the number of  load increments and the 
accuracy of  data reduction. Furthermore, the 
data reduction is started from the load level of  
P -- 0.392 kN in order to discard initial fluctu- 
ation in the measurement. The relationship 
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Figure 3 Summary of the experimental relationships between 
the longitudinal modulus and stress. 

Figure 2 An example of a direct output 
of a load-strain curve, Specimen No. 3. 

between EL and (7 1 for each specimen obtained 
from the aforementioned procedure is shown in 
Fig. 3. Although a scatter in the results is con- 
siderable, two clear trends can be recognized: EL 
increases at smaller stress levels, and decreases 
before the final failure. 

The averages of  the plotted data in Fig. 3 in 
terms of  both EL and 0-1 are calculated and indi- 
cated in Fig. 4. As mentioned previously, van 
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Figure 4 Averages of the results and the fitted fractional 
constitutive relation. (o) Experimental, (x) from [6], (---) 
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Figure 5 A relationship between the axial fibre modulus and 
the fibre stress through the Rule of Mixtures: (e) exper- 
imental results; (x, v) aeroelastically tailored composite 
wing model [2]. 

Dreumel and Kamp [6] also describe the harden- 
ing behaviour. Their experimental results and 
their empirical linear formula with respect to 
stress are also indicated in Fig. 4. Note that their 
data are truncated at the stress level of 1.0 GPa. 
A dashed line corresponds to the constitutive 
equation given later. 

Fig. 5 depicts a modified relation between 
fibre stress o~ and longitudinal fibre modulus EL f 
obtained by the following equations equivalent 
to the Rule of Mixtures: 

ELf = [E L -- (l -- V f ) E m ] / V  f (2) 

0-[ = [0-1- (1 - Vf)Er.e,]/Vr (3) 

where Em is assumed to be invariant and equal to 
3.92 GPa, and where the average of measured ~,  
69%, is used. 

3. C o n s t i t u t i v e  equations derived 
from non-linear elasticity 

The theory of non-linear elasticity based on 
complementary energy function W* was applied 
to a description of non-linear stress-strain 
behaviour under a longitudinal shear loading of  
UD composites by Hahn and Tsai [9] and Hahn 
[10]. The present non-linear behaviour can be 
described again by adopting such a manner. One 
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favourable point in the present non-linearity is 
that loading and unloading paths are precisely 
identical. The application of the complementary 
energy function to this case, therefore, seems to 
be more convincing than to the non-linear shear 
behaviour where such a good identity of paths is 
never found. Another favourable point is that an 
effect of  finite deformation can be neglected here 
because the maximum strain is around 1%. 

Following the well-established work by Green 
and Adkins [1 1] we can define the strain energy 
function W for a pure elastic continuum. Stresses 
are obtained by differentiating W as follows: 

3W/~e  U = a~ ( i , j  = 1 ,2 ,3 )  (4) 

where e u are tensorial strains. If  the following 
condition holds, 

det (32W/Oe03ekl) r 0 and > 0 (5) 

we can define the complementary energy fun- 
ction W* by 

W* = ooe o . -  W (6) 

For  unidirectinal composites, the condition of 
Equation 5 is valid due to some physical con- 
siderations (see Appendix I). By employing W*, 
strains are obtained similarly to Equation 4: 

e o = c~W*l~aij (7) 

Let us assume that the present UD material is 
transversely isotropic in the 2--3 plane and that 
the plane-stress state is appropriate. W* can 
then be expanded with polynomial bases al,  G2 
and 0-6 z [9, 11]. An unabridged expression up to 
the fourth order of  W* is reached: 

W *  1 2 ~--- ~S110-1 ..[_ 1S22 0.2 ..[_ 1S66 0-2 

-'[- S120-10- 2 --{- 

+ $1~20-2a= + 

+ $266 ~2 a2 + 
1 4 

-t- ~$66660"6 -[- 

1 3 1 3 ~Sm0-1 + ~$222tr2 

S1220-10- 2 + S1660-10- 2 

1 4 
�88  O'4 + ~522220-2 

Sl1120"~0-2 + S1122020 "2 

2 2 2 2 
ql- S12220-10-~ + Sl1660-10- 6 .q._ $22660-20- 6 

-t- S12660-10"20" ~ (8 )  

A loading applied in the present experiment is a 
uniaxial tension and a transverse stress 0-2 will 
rapidly vanish away from grips. The terms not 
underlined in Equation 8 can therefore be omit- 
ted as follows: 

W *  1 2 1 0"~ ' t-  1 4 = ~-5110-1 -[- ~-Sll 1 ~S11110-1 (9) 



The longitudinal strain el is given by 

(lO) 

where the identity between tensorial and engin- 
eering strains, el, = ~,, is considered. Hence, the 
longitudinal elastic modulus is obtained after 
the assumption of Equation 1: 

do" I 1 
E L - 

de, (de1/dal) 
(11) 

1 

Sll + 2S1,,al + 3Slll,~r 2 

Thus, the dependency of E c on a~ is described by 
a fractional function of the second order using 
higher-order elastic compliance coefficients. It 
should be noted that the pure linear relation, 
EL = 1/Sll, holds when a, = 0. Another 
important point is that the empirical equation of 
van Dreumel and Kamp [6] can be derived from 
Equation 11. If  S, j, S, ll and S,,,, are the same 
order of magnitude (as stated later), the follow- 
ing approximation is very common for smaller 
0-1 �9 

1 1 2S,1, o1(12) 
Sll -]- 2S,, lal  + 3S, l,l~rZl -- Sll S~1 

Thus, the linear relation with respect to a, is 
reached. 

4. Estimation of higher-order 
compliance and discussion 

A comparison and fitting of Equation 11 with 
the experimental data of Fig. 4 provides a deter- 
mination procedure for the higher-order com- 
pliance coefficients. A direct least-squares fitting 
may be possible but seems too complicated. The 
following simple sequence is employed instead 
of a direct method. 

By extrapolation of the averaged exper- 
imental data, S], is determined as 

Slj = 1/EL(0) = 7.634 x 10 3GPa-I 

(13) 

Secondly, the axis of symmetry of the second- 
order fractional function is assumed to be 
a~ = 1.1 GPa by inspection of Fig. 4. After 
these two steps, Equation 11 is rewritten by 
introducing an unknown parameter k: 

1000 
E L ( o  I ) = 

7.634 + k [(o- 1 - 1.1) 2 - 1.21] 

(14) 

A weighted least-squares technique for the 
inverse of Equation 14 is then adopted, namely 

minimize: ~ w(m)[ 1 1 12 
m=l EL~7~m ) E(m) (]5) 

where 0"I rn) and EL (m) are the set of the data in Fig. 
4 and W (m) is a weighting factor. The reason why 
the weighting technique is utilized is that fitting 
at lower stress levels is regarded as more practi- 
cally important than at higher stress levels. The 
value of W (m) = 2 is chosen for the left-hand 
four points in Fig. 4, and w(m)= 1 for the 
right-hand three points. A regression equation is 
derived as 

U //7.634 + k [(a~ m) - 1.1) 2 - 1.21] 
W (m) 

m = 1 ~. 1 0 0 0  

') EL~m ) [(ol m) -- 1.1) 2 -  1.21] = 0 (16) 

By substituting the data in Fig. 4, we obtain 
k = 1.111 and it follows that 

S I I I  - -  1.222 x' 10-3GPa -2 

$1111 = 0.3703 x 10-3GPa -3 (17) 

Hence, Equation 12 is actually written as 

Ec = 1000/(7.634 - 2.444 cr~ + 1.111 o-2) 

= 1000/[6.289 + 1.111 (cq -- 1.1)2]GPa 

(18) 

Some discussion will be provided here about 
the estimated results. Basically, an agreement of 
Equation 18 plotted by a dashed line in Fig. 4 
with the averaged experimental modulus is very 
favourable. The data from van Dreumel and 
Kamp [6] fitted by their linear relation is rather 
similar to the present results up to the inter- 
midiate stress range in trends. This fact is con- 
sistent with the theoretical explanation of 
Equation 12. Equation 13 leads to E c ( 0 ) =  
131 GPa, and it is worth mentioning that similar 
values of EL frequently appear in the literature 
(e.g. [12-14]). A dashed line in Fig. 5 also rep- 
resents the following constitutive equation of 
carbon fibres derived from the same procedure 
as mentioned above, with the data sets indicated 

4079 



by dots: ~ 180 
r , ,  

Ef ( r  = 1000/[4.367 - 1.202 tr~ ~ _ 

+ 0.3803 (a() 2] (19) 
O 

where the unit is GPa. Again, the correlation :; 
between the estimated relation and the reduced 
data is very good. Fig. 5 also shows results of 
Curtis et  al. which were measured directly for -~ 
single fibres by using an ultrasonic technique. ~= 

.~_ Although the absolute values are different from =~ 
the present results (probably because of the fibre o 
material) we can find an analogous tendency of 
hardening. Note that the average of these data 
[5] is close to the value of EL f used in some old 
papers, e.g. Kobayashi and Ishikawa [15], 
namely E f = 280 GPa. 

In practice, it seems sometimes to be awkward 
to apply directly Equations 18 and 19 for UD 
carbon composites and single carbon fibres 
because a non-linear calculation is always 
necessary. An average in the applied stress range 
from o -~ to cr~ is sufficient in many practical cases. 
Therefore, an averaging formula is worth show- 
ing here for the fractional constitutive equation 
of  Equations 18 and 19: 

& =  
eta 

f ,  ELde  

arctan ( ~ - - ~ )  - arctan (al~ A B - -  ) 

3ASlm(tr ~ _ ~0) (20) 

where A = [ ( S n / 3 S m l  ) - B2] v2 and B = S i n ~  

3Sm~. As an example of an application of this 
formula to UD composites, /~L = 148GPa is 
obtained in the range from a ~ = 0 to 
tr7 = 1.0 GPa, which is 62% of the failure stress. 

5. Empirical relation between 
longitudinal modulus and strain 

The relationship between the longitudinal 
modulus and stress is developed in the previous 
section. In the actual design process, an 
expression of the modulus based on strain is 
required as well. A straightforward substitution 
of Equation 8 by the strain energy function is as 
follows: 

1 2 W = � 8 9  e 2 + ~Q22e2 

+ . . .  + �89  + . . . Q u 2 e 2 e 2  + . . .  

(21) 
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Figure 6 A strain-based description of the present behaviour: 
(e) experimental results, ( - - - )  fitted curve. 

However, there lies an obstacle to an employ- 
ment of the strain energy function W. In a 
unidirectional tensile test, we produce not only a 
longitudinal strain e I but also transverse strains 
e 2 and e3. It follows that many cross-stiffness 
coefficients of higher order, for example Ql12, 

Q113, Qm2, etc. cannot be omitted for a full 
description of the present behaviour. It seems, 
therefore, to be impossible to determine these 
coefficients only by the uniaxial test. 

An empirical relation parallel to the quadratic 
expression of Equation 21 in form is a possible 
approach for resolving such an inconvenience. 
Thus, we have 

EL(el) = EL0 + ELIel + EL2e~ (22) 

where EL~ and EL2 are two empirical coefficients 
which may be referred to as higher-order longi- 
tudinal Young's moduli. These two moduli can 
be estimated similarly to the above-mentioned 
procedure. The experimental results in Fig. 4 are 
modified into the relationship between EL and e~ 
and indicated in Fig. 6. The quadratic relation 
of Equation 22 is then fitted by using the weighted 
least-squares technique, and the following 
results can be reached: 

EL(el) ---- 131 + 7.71 X ]03el -- 5.51 X 10Se 2 
(23) 

where the relation EL(0) = 131GPa is 



TABLE I Comparison of averaged longitudinal tensile 0.8 
moduli 

O" 1 (GPa) Modulus (GPa) 

Equation 20 Equation 24 Rule of Mixtures 

0 131.0 131.0 159.9 
1.0 148.0 148.3 (ELf = 230, 
1.6 (= Orb) 151.4 151.2 Vf = 69%) 

maintained. As a much simpler tool for practical 
applications, the average between e0 and ~ is 
given here: 

EL = ELO + �89 + t ~ 

+ 1  ~EL2 [(e~)2 + e~e0 + (~)2] (24) 

Table I is prepared here in order to compare 
two values of  averages obtained by Equations 20 
and 24. The initial point is commonly assumed 
to be the stress-free state. The results calculated 
from the Rule of  Mixture assume an invariant 
E, f = 230GPa  based on Toray  data [3] for 
T-300/3K,  Em = 3 .92GPa and Vf = 69%. It  
can be seen that the two averages are quite simi- 
lar. The Rule of  Mixtures result is rather close to 
the averages up to the failure stress or strain. 
This fibre modulus, therefore, is inappropriate 
as the basic material data for a calculation of 
elastic response. We can employ such a modulus 
for a simple material evaluation like a com- 
parison of specific moduli of  various filaments. 
Equation 20 or 24, or an application of 
Equation 19 with the relevant Vf will provide a 
much more comprehensive longitudinal modu- 
lus in a rigorous structural design. 

The compressive behaviour of  U D  carbon/ 
epoxy still remains unclear at the present stage. 
By adapting a stress-strain curve in compression 
shown in a textbook [18], however, an implicat- 
ive result is obtained as stated in Appendix II. 
Some more compressive experiments are necess- 
ary for a definite conclusion. 

6. Example of application of the 
present consitutive equation 

In order to demonstrate the importance and 
effectiveness of  the present constitutive 
equation, an application is presented here as an 
example. One of the authors has developed 
material non-linear analysis of  fabric composites 
[16]. At the level of  that work [16], three sources 
of  material non-linearity are taken into account: 
the first one is behaviour analogous to the knee 
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Figure 7 Application of the fractional relation to the theor- 
etical stress strain analysis of carbon-epoxy composites 
with a reinforcement of 8H satin fabrics. (O O) Exper- 
imental, ( ) FMN, ~-  ) PMN. 

[17] caused by many transverse crackings, the 
second one is an off-axis non-linear behaviour 
[9] related to the thread crimp found in fabric 
[16], and the third one is a non-linearity in pure 
resin regions also characteristic of  fabric com- 
posites. In that paper, non-linear stress-strain 
relationships of  glass-polyimide 8H satin com- 
posites are well simulated by the consideration 
of these three sources. 

For  the case of  carbon-epoxy,  however, 
theoretical results in [16] for 8H satin do not 
agree with experimental curves [4] to a favour- 
able extent. The cause can be ascribed to the 
present longitudinal non-linear behaviour of  
carbon fibres. The constitutive relation of  a frac- 
tional function, Equation 18, is then added to 
the process of  a non-linear calculation. The 
work cited [16] should be referred for details of  
the theoretical part. Fig. 7 depicts a comparison 
between the fully material non-linear solution 
including Equation 18 and the partial material 
non-linear solution of  [16], which are 
abbreviated as F M N  and P M N  respectively. We 
can observe that a correlation of the F M N  curve 
with the experimental results of  an on-axis ten- 
sile test of  thick 8H satin carbon-epoxy speci- 
men is very good. The curve labelled AE (Total 
Count) represents a total count number  
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measured by an acoustic emission device. This 
quantity is mainly related to the transverse 
cracking which is less influential in the case of 
carbon composites than glass composites because 
of the difference in the longitudinal moduli. 
Thus, the non-linear behaviour of the present 
concern is the most dominant property for a 
better theoretical description of the stress-strain 
relationships of the composites with carbon 
fibres of the present type. 

7. C o n c l u s i o n s  
(a) A serious dependency of the longitudinal 

modulus of UD carbon composites on stress or 
strain is found by uniaxial tensile tests. The 
longitudinal modulus increases as stress or 
strain increases up to an intermediate level of 
tension. Stress-strain curves are convex down- 
wards particularly in such a state. 

(b) A fractional constitutive relation with a 
quadratic denominator is derived based on the 
theory of non-linear elasticity. Two higher-order 
compliance coefficients, $11~ and Sm~, are esti- 
mated by fitting the constitutive equation to the 
experimental results. The fractional relation 
with the estimated coefficients exhibits an excel- 
lent agreement with the experimental moduli. 
An averaging formula for the moduli is given for 
a convenient practical application. 

(c) An empirical relation between the longi- 
tudinal modulus and strain is also provided 
instead of a rational equation. This relation is 
useful for a strain-based description of the 
present behaviour. 

(d) The longitudinal modulus of a single fibre 
reported by the manufacturers is close to the 
average from zero stress up to failure. 

(e) A potential of the present equations is 
demonstrated in an example of a theoretical 
description of the non-linear stress-strain 
property of carbon-epoxy composites with a 
reinforcement of 8H satin fabrics. 

A p p e n d i x  I A Condi t ion for positive 
definiteness in Equation 9 
An elastic continuum must have a positive defi- 
nite strain energy function W from thermo- 
dynamics considerations [19]. On the other hand, 
it can be concluded that W* should also be 
positive and definite. This condition is written as 

det (O2W*/&rijOaJ > 0 (A1) 

Because only al is meaningful in the present 
case, we have 

~2W*/~r = S l l  -~- 2S111o '1  + 3S1111o~  > 0 

(A2) 

The following inequalities are necessary and suf- 
ficient in order that Equation A2 holds for the 
global stress range: 

Sllll > 0, 3SIlSIIII - S~ll > 0 (A3) 

Note that the present higher-order moduli of 
Equations 13 and 17 satisfy the above condition. 

A p p e n d i x  II A modif icat ion of 
Equation 18 considering compressive 
behaviour 
Some stress-strain curves under an axial com- 
pressive loading are available in the literature for 
typical carbon-epoxy systems. The curve shown 
in Jones [18] is used here and it is reduced to the 
relationship between the longitudinal com- 
pressive modulus E~ and al. The results are 
depicted in Fig. 8 by open squares. Because the  
fibre material and Vr of the utilized curve are 
uncertain, a direct correlation of the present 
data indicated by dots with those squares may 
not be suitable from a strict standpoint. Fig. 8, 
however, gives full confidence for the appli- 
cation of the fractional equation. The solid curve 
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Figure 8 A trial of an extrapolation of the fractional relation 
into the compression region. 
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derived from Equation 18 is not far from the 
compressive moduli, and a slight modification of  
this equation provides a better fitting in the 
global range of  stress. A weighted least-squares 
technique similar to Equation 16 with the same 
peak of  the curve as Equation 18, 1000/6.289 at 
aj = 1.1, gives us the following coefficients: 

Sn = 7.477 x 10  -3  S m = --1.080 • 10  -3  

Sun  = 0.3273 x 10 -3 (A4) 

(units are  based  on  G P a )  

It follows that 

1000 
EL = 6.689 + 0.982 (a~ -- 1.1~ (A5) 

An agreement of this equation (expressed by the 
dashed curve in Fig. 8) with the moduli on the 
compression side is very good, with favourable 
correlation on the tension side as well. 

By substituting the values of Equation A4 into 
Equation 20, we have two kinds of  averages for 
tension and compression: 

a~ = 0.0 to cr~ = 1.6: 

a~ = - 1.0 to a~ = 0.0: 

E'~ = 152 .2GPa  

/?[ = l l 3 . 7 G P a  

(A6) 

which are indicated by two arrows in Fig. 8. 
These averages are consistent with the material 
data appearing in some literature for a bilinear 
approximation (e.g. [20]). 
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